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Abstract

We present here three new algorithms (one purely iterative and
two DIIS-like) to compute maxima of symmetric homogeneous func-
tions of orthogonal matrices. These algorithms revolve around the
mathematical lemma that, given an invertible matrix A, the function
f(U)=Tr(AU) has exactly one local (and global) maximum for U
special orthogonal (i.e. UUT = 1 and det(U) = 1). This is proved
in the appendix. One application of these algorithms is the computa-
tion of localized orbitals, including, for example, Boys and Edmiston-
Ruedenberg (ER) orbitals. The Boys orbitals are defined as the set of
orthonormal orbitals which, for a given vector space of orbitals, maxi-
mize the sum of the distances between orbital centers. The ER orbitals
maximize total self-interaction energy. The algorithm presented here
computes Boys orbitals roughly as fast as the traditional method (Ja-
cobi sweeps), while, for large systems, it finds ER orbitals potentially
much more quickly than traditional Jacobi sweeps. In fact, the re-
quired time for convergence of our algorithm scales quadratically in
the region of a few hundred basis functions (though cubicly asymptot-
ically), while Jacobi sweeps for the ER orbitals traditionally scale as
the number of occupied orbitals to the fifth power. As an example of
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the utility of the method, we provide below the ER orbitals of nitrated
and nitrosated benzene, and we discuss the chemical implications.

Introduction

Although a set of occupied molecular orbitals can be rotated among them-
selves and still preserve their determinant, the associated m-electron wave-
function,! one cannot but help looking for some physical meaning in one
electron, individual orbitals. At the very least, the choice of ground state
orbitals affects one’s chemical intuition of how individual electrons behave.
In a more computational context, the choice of occupied orbitals is important
in local correlation calculations|1], where one wants local orbitals so one may
allow only local excitations in a correlated wavefunction.

Several sets of localized orbitals are popular today among chemists, in-
cluding those of Boys|2][3], those of Edmiston-Ruedenberg[4], and those of
Pipek-Mezey[5]. (See reference [5] for a brief but thorough introduction to
these different sets of orbitals and the Jacobi sweep method used to calculate
them). Furthermore, in solid-state physics, localized orbitals have been com-
puted as “maximally localized Wannier functions” [6][7][8]. Thus far, most
sets of localized orbitals in common practice are found by maximizing some
single-valued function of the orbitals {xi,...,xn}. For the three methods
listed above and often used by chemists, these functions have the following
form:

CBoys(Xla"'aXn) = Z|<X1|r|X1 >|2 (1)

1
ooy Xn = < XiXil=IXiX: > 2
Cer(xa Xn) Z XX|7,|XX (2)

n  Numb.Atoms

Cru(Xt,-oxn) = D> Y, < xlPaba >I (3)
=1 A=1

(Here, P4 projects a given orbital onto the space of atomic orbitals centered
at atom A.) Note that each of these functions can be written as a homogenous
and symmetric function of orthogonal matrices.? For example, in the ER
case, see equation (4) in the next section. We will revisit this point below.

INote that here and for the rest of this paper, n is the number of electrons in the
system and N is the size of the atomic orbital basis chosen by the computational chemist.
2Here, by homogenous and symmetric, we mean that a function that can be written



Though we expect our algorithm and results to be applicable to any set of
localized orbitals which maximize some homogeneous and symmetric func-
tion of orthogonal matrices, for the sake of concreteness, in this paper we
shall focus on the ER orbitals. The defining property of the ER orbitals
was first suggested by Lennard-Jones and Pople[9] when the two were look-
ing to combine orbitals of different irreducible representations of symmetric
molecules and form “equivalent orbitals.” The authors noted that they came
upon sets of orbitals that presumably maximized orbital self-repulsion, and
thus minimized the non-classical exchange energy. This statement is just the
fact that, for any set of orthonormal vectors,

o =3 (ilyli) = 32 (i) + 3 (i)

ij i#£j

is constant in any basis. Hence, when the first term (self-repulsion) is max-
imized, the second term (exchange) is minimized. A decade later, in their
paper of 1963[4], Edmiston and Ruedenberg made this construction formal
(irregardless of any symmetry) and motivated the use of these orbitals as
localized orbitals spanning the same space as the occupied space. Of all of
the localization schemes, we consider these (the ER) orbitals the most natu-
ral objects because they have such a simple physical interpretation. (A side
benefit is that, unlike Boys orbitals, ER and Pipek-Mezey orbitals preserve
o — 7 separation. See [5].)

Unfortunately, the ER orbitals are also the most computationally ex-
pensive set to compute. In their original paper, Ruedenberg and Edmiston
proposed two methods for calculating the ER orbitals:

1. Jacobi sweeps. Here one moves a single step by rotating in the plane
spanned by any two coordinate vectors, maximizing the ER function in
that 2-plane. One then performs this steps over all n - (n — 1)/2 pairs
of coordinate vectors, a process called a sweep. Sweeps are repeated
until self-consistency is reached.

2. Direct minimization following the gradient of the ER function (i.e.
steepest descent).

Declaring that Jacobi sweeps were “simpler” than direct minimization,
Edmiston and Ruedenberg focused on the former as the primary tool for

as: f(U) = 3 H; jiisjs..injnUirjiUisjs =+ Ui, j. (i.e. homogeneous) and
2192 ... 1n
Jij2---Jn

Hiyjy.igjrisgoringn = Hitjrisjorrinpingn (1-€. Symmetric)
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computing ER orbitals. After all, every Jacobi sweep is guaranteed to in-
crease the ER function; furthermore, no line-minimizations are required, as
each step in a single sweep has an exact distance to follow. Unfortunately,
though, Jacobi sweeps do not lend themselves easily to algorithms designed
to improve computational efficiency. Essentially, the problem is that after
each step in a sweep, one must update the orbitals or the integrals. If we
suppose that our algorithm saves the n* molecular orbital integrals (ij|lk)
(which is already problematic for big systems!), then after each step, one
must update these integrals. If we have just done a step in the ¢j-plane,
then the most difficult integrals to update are of the form (ip|qr), a process
which scales as n®. Because a sweep contains on the order of n? steps, each
sweep scales as n°. Any attempt to improve the scaling of this algorithm
will require efficient computation of the integrals (ij|kl). Though this should
be possible once the orbitals are well-enough localized, efficient computation
will depend on the extent to which these orbitals localize, and the speed of
such localization. Such an algorithm would not directly take advantage of the
sparsity of the AO basis; furthermore, one still has n? steps in each sweep,
making linear scaling impossible. As such, the problem seems unnecessarily
difficult—if one seeks improved scaling, one really should take steps closer to
the gradient.

The second approach towards optimization suggested by Edmiston and
Ruedenberg does exactly that—it steps directly along the gradient, doing a
line-minimization in the gradient direction. Because each step requires only
the gradient of the ER function, the algorithm requires only the integrals
(ij]j7). Starting from the AO basis, this procedure scales as nN*. However,
using the sparsity of the AO basis, and given initial guess orbitals that are well
localized, such integrals can be generated in linear time starting from the AO
integrals. (See below.) After all, each localized electron only interacts with
a bounded number of other localized electrons around it. However, there are
two concerns in doing direct minimization: (i) line minimizations are costly;
and (ii) direct minimization does not converge quickly near a stationary
point. If one seeks a quickly-converging direct minimization scheme, one must
invoke conjugate-gradient methods. We have indeed implemented conjugate-
gradient minimization over the orthogonal group (following Edelman et al
[22]). However, even though this method is reliable and does converge to a
stationary point of the ER function, we have found the need for accurate line
minimizations far more costly than the algorithm we present below.

In this paper, we propose a third, iterative approach towards calculating
the ER orbitals, one which is faster than past algorithms and which gener-
alizes to other localized orbitals coming from symmetric homogeneous func-



tions of orthogonal matrices. Simlarly to direct minimization, our algorithm
requires only a good-starting guess and an analogue of the first derivative
of the function to be maximized. Most importantly, we demonstrate in this
paper that our algorithm scales roughly quadratically in the number of oc-
cupied orbitals when we have n ~ 100 — 200, provided that our initial guess
is good. (The algorithm should scale cubicly asymptotically as n goes to
infinity.)

1 Mathematical Preliminaries

In the derivations and algorithms given below, we will make reference to
SO(m), which is the manifold of orthogonal matrices with determinant 1.
(Formally, U € SO(m) if and only if UUT = Id and det(U) = 1.) We
parametrize the orthogonal group (around the identity) using the exponential
map: U = e? for A antisymmetric. For U close to the identity, there is a
one-to-one map between U and A. In the equations below, A is always an
antisymmetric matrix, and U, D € SO(m) always.

2 A basic iterative approach towards calcu-
lating the ER orbitals

We are given a set of m orthonormal occupied molecular orbitals { XEO)}

i=1
and we seek the (orthonormal) molecular orbitals {XE*)} which are maxi-

mally self interacting. In other words, we want to maximize the ER sum,
(X1, X2 -+ s Xm) = Z Oxaxalxaxi)

where {x;} is any set of orthonormal orbitals spanning the occupied space.
Expressed as a function of an orthogonal matrix, the ER function is homo-
geneous of degree 4:

£(U) = Z U;iUkiUi Ui <X§O)X20)|X1(O)X£O)) (4)

ijklr

We want to maximize this function for U € SO(m), and hence compute the
ER orbitals: y\ = 3 XE.O) Uji.
J



If we parametrize SO(m) by its antisymmetric generators, i.e. we write
U = ¢®, and differentiate with respect to A;;, we find

= 4(Ri; — R;:) (5)

where Rj; = (X i X10)| XZO) (0)). In other words, the stationary points of &
are those orthonormal orbitals {xx;} for which (x;x;|x;x;) = (XjxilXxix:)-
Although we cannot analytically maximize £ (nor find the optimal { Xz('*) }),

we can work easily with the surrogate function

n(U) = Z(xzxzo)m(”) ‘0)) ZUJ,(X,O) PR ”)
= ) R;U; = Tr(R™U)

As shown in the appendix, the function 7(U) has a unique local (and
global) maximum at U = R (RTR)fl/ ? If we can assume that our initial
guess orbitals, {x(®}, are “close” to the ER orbitals (a point of discussion
later on), then this suggests a basic iterative scheme to calculate the ER
orbitals.

1. Start with some orthonormal set of orbitals {x(®} which is localized
and hopefully close to the ER orbitals.

2. For k > 0, construct the two-electron integrals above R(k) (ng) ka | X(k) (k) )
T ~1/2
3. Construct the transformation U*+1) = R(*) ((R(’“)) R(’“)> .
Define D®+1) = D&) . gk+) — g . yg®@ ... gk . gk+),
4. Build {x**V} as
D DL 0

J J

5. Set k = k + 1. Repeat steps 2-4 until R(*) is sufficiently close to sym-
metric and the process appears to have converged. The limit orbitals
{ (+) } should be the desired ER orbitals, with R® symmetric. If we

have converged after N iterations, we define D® = U® . U® ... UW)
and note that X(*) E XEO)D(*).



We will call the iterative steps defined above 7-steps.
We emphasize that at no time in the above algorithm do we ever produce
a set of orbitals { X(.k)

7

} which is not orthonormal. Alternatively, we may say

that Yk, U®) € SO(m) where m is the number of occupied orbitals. Hence,
for every k, D®) = UMW .U ...UM js ortho%onal, where D®) is the matrix
expressing {ng)} in terms of the orbitals {Xio) }. (This constraint will be
relaxed in the second algorithm we propose.) So the geometric picture in
the algorithm above is that, within the space of all m x m matrices, R™ |
we walk along the surface SO(m) until we come to a matrix, D®), for which
R® is symmetric. This D™ often represents the ER orbitals.

We say above that the orbitals { Xz('*)} are “often” the ER orbitals, but
that need not always be the case. The convergent orbitals can be maxima,
minima, or saddle-points of the function (D) — of course, D for the ER
orbitals must be the (global) maximum of £. One can see that this is a
problem as follows: when the iteration convergences, we must have

~1/2)

(
lim U® = 1im R® (R®)" R®) 1d

k—o0 k—oo

which implies that R*) = (R®)?. Given equation (5) for the first derivative
of &, { XE*)} must be a stationary point of £. But that is all we can say about

the limit orbitals {Xg*) }, for there are no conditions on the second derivative.

One more point should be made. Although it does not seem that we are
analytically guaranteed that the value of £ will increase over the course of
several iterations, i.e. that (D) < ¢(D®)) < ... < ¢(D®) < it is true
that, for small enough steps, the value of £ must increase. This is a direct
consequence of the proportionality

on 1 8¢

6Tij|A:0 = Z@TﬁlAZO = Rij — Rj;.

(which is really what ensures that stationary points of 7 are stationary points
of £). Hence, for a small step, U ~ Id + A,



§(U0) = S(Id +4)

- +28A”|A 0° Azy

1<]

= &(Id) +4- ZaA laco - Ay
ij

1<j
~ £(Id)+4- on
~~

>0

From a certain point of view, the reason we cannot guarantee that, for
large steps, £(D**1)) > ¢(D®) is because ¢ and 1 have different second
and higher derivatives. So, even though 7 is maximized in each step, £ may
decrease. However, we have found empirically that, if we operate not too far
from a maximum /minimum, step sizes are not too big and £ always increases.

3 An accelerated DIIS-like algorithm

The algorithm presented above, while stable, can be greatly sped up using
a DIIS-like algorithm.[13, 14] Just as SCF theory seeks molecular orbital
matrices which are orthogonal (C”SC = 1Id) and for which the corresponding
Fock-matrices are block-diagonal, we seek m x m matrices (D) which are
orthogonal (i.e. D € SO(m)) and for which the corresponding R matrices
are symmetric. (Here, we again think of the columns of D as the coefﬁcients

of the ER orbitals in the original basis given to us, i.e. x; = Z X(O)D

eqn (6).) For any matrix D, we define the error of D as the lack of symmetry
of R(D), that is E;;(D) := R;;(D) — R;;(D). The assumption of any DIIS-
like algorithm is that, for small changes in D, the changes in the error matrix
are linear.

With this in mind, we implemented the following two DIIS-like procedures
(which we call DIIS-1 and DIIS-2 and which very much parallel SCF DIIS):

1. Start with some orthonormal set of orbitals {x(®} which is localized
and hopefully close to the ER orbitals.

2. For k£ > 0, compute Rg-c) and calculate the error matrix
(k) ._ p(k) (k)
3. Construct the DIIS B-matrix, i.e. for 1 <14,7 <k,
we define B;; = (E®|E®) = > EYEY.

r,s=1
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4. Set up the standard DIIS equations and solve for {(c¢;)}:

By By -+ By —1 c1 0
By By -+ By —1 Ca 0
.. E _1 PR = e
Bri Bra -+ B —1 Ck 0
-1 =1 --- -1 0 A -1

k
5. Construct an extrapolated matrix C**1) = Y~ ¢, D@,
a=1
6. At the extrapolated C*t1) construct an extrapolated R. This can be
done in two ways.

(a) For DIIS-1: Most formally and precisely, we may define:
i gD > NOrSas

J g
J
& k+1)| , (k+1
ii. SE = (68 gf )
i, R%H—l) _ (¢§k+1)¢§k+1)|¢£k+1)¢£k+1))
(b) For DIIS-2: Alternatively, we may note that, to first order around
. k
the identity, R = 3" ¢, R{?.

a=1
7. Take a generalized 7-step. (See subsection 8.5.) More precisely, we
construct V*+1) = (SE+1))-1R (k+1) ((R(k+1))T(S(k+1))—1R(k+1)> —1/2,
we define D+ = Cr+DV ) and we set ¥ = 32 Xi‘O)DﬁH).

(2

J

8. Increment k£ by 1 and repeat steps 2-7. Iterate until convergence, which
is when R(®) is sufficiently symmetric and the error matrix is close to
ZETOo.

Here the geometric picture in R™ is as follows. Just as before, we want
to find an m x m matrix which is both on the manifold SO(m) and for which
the corresponding R matrix is symmetric . We start out on SO(m) at the
identity, D = Id,,,,. We next make one n-step and move to C) = DM,
which is also on SO(m). From this point on, extrapolation occurs. Given
k + 1 points on SO(m), {D©@ DM ... D®} we assume that ¢ is locally
a quadratic function near D®*), and (just as in Pulay’s DIIS algorithm) we
estimate the point C**1 lying in the k-dimensional subspace spanned by

9



{D® DO D®_DO . D _DE*1} which should have the minimum
error by extrapolation. This takes us off SO(m), i.e. C*Y) ¢ SO(m).
In other words, the extrapolated orbitals are not orthogonal. We then do
a generalized 7-step, computing D**V) which brings us back to SO(m),
so we again have orthogonal orbitals. (A generalized n-step maximizes the
surrogate function 7 just like the usual n-step, only it recognizes that the
starting orbitals are not orthonormal, but rather have overlap matrix S. See
subsection 8.5.) This process is iterated until convergence.

In the algorithm above there are two procedures for constructing the R
matrix at the extrapolated coordinates C¥): either by (a) explicit construc-
tion (which is slow but exact), or (b) by extrapolation of previous R matrices
(which is fast, but efficient only when we are working close to the identity).
With either method, the program jumps on and off of SO(m), and con-
verges significantly faster than pure n-iterations. See below. With regards
to the difference between DIIS-1 and DIIS-2, we expect DIIS-1 to be more
broadly applicable than DII-2; i.e. DIIS-2 is faster than DIIS-1, but should
presumably require a better initial guess (as it is formally correct only near
the identity). The question of how good an initial guess is required will be
investigated in a future paper.

4 Numerical Performance

4.1 DIIS vs. Jacobi Sweeps

The algorithms described above have been implemented into a development
version of the Q-Chem program[18]. A simple assessment of the speed of
our DIIS-like algorithm was made by comparison to the method of Jacobi
sweeps in the computation of Boys’ orbitals. 3 To do so, we made the
following definitions:*

Boys __ . . . . o Boys Boys
R =<ilr|i > - <i[r[j > €T O Boys = Max R;™ — Rj;

3As has been emphasized, our algorithm applies equally well to the Boys’ orbitals or
Pipek-Mezey orbitals as to the ER orbitals. In this case, we chose not to compare DIIS
and Jacobi sweeps when generating ER orbitals because, as has been pointed out, ER
orbitals are computationally expensive when computed by Jacobi sweeps. Furthermore,
the amount of memory required to hold the necessary integrals was beyond our capacity
for large basis sets. See Table 2.

41t can be shown that, just as in the ER case, the Boys function is maximized when
RPBo¥s is symmetric.
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We then computed (via Jacobi sweeps) “rough” Boys’ orbitals, defined as
Boys’ orbitals with errorpe,s < 1.0 x 1072. With these rough orbitals as our
initial guess, we counted separately both the number of Jacobi sweeps and
the number of DIIS-like steps required before errorgeys < 1.0 10~°. Results
for the simple molecule benzene (CgHg) are given in Table 1.

Recalling that each individual DIIS-step requires evaluation of just one
or two R matrices, whereas Jacobi sweeps loop over all orbital pairs and
compute integrals, we conclude that our algorithm competes with Jacobi
sweeps for convergence.

4.2 DIIS vs. n-steps

Because our algorithm was designed to compute not just Boys’ orbitals, but
also more computationally expensive orbitals, we calculated the ER orbitals
for benzene (CgHg) with increasing basis size. For reference, we compared
the speed of convergence of out DIIS-like algorithms with the ordinary 7-
step algorithm. As an initial guess of localized orbitals, {x(?)}, we used the
the Boys’ orbitals from the occupied SCF space. We defined the ER error
as errorgr = HlZ?.X|Rz] — Rj;| and declared convergence when errorpp <

1.0 x 1075.

In Table 2, we record the total number of iterations required to start
from the Boys’ orbitals and converge to the ER orbitals. We provide data
from three separate calculations, one using only 7 iterations and the other
(almost only) two DIIS-like iterations. In all of these calculations, when the
algorithm had found a stationary point, a full second-derivative check was
employed to make sure that the stationary point was a maximum. When a
saddle point was encountered, we stopped our count of the iterations, and
did a one line-minimization in the direction v;, where v; is the eigenvector of
the Hessian with the most positive eigenvalue. Subsequently, we ran twenty
(uncounted) 7 iterations in order to improve our starting point. At that
point, we turned the count back on, monitoring the number of iterations
(either n or DIIS-like) until convergence.

The data in Table 2 demonstrates how much faster calculations become
when using DIIS-like interpolations instead of pure 7 steps. This difference
is enormous when saddle points are encountered because DIIS-like interpola-
tions allow you to move to nearby stationary points quickly, whereas 7n-steps
move slowly and cautiously (though more reliably) towards new stationary
points. The quick convergence of the DIIS-like routines here reflects the
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parabolic and well-isolated nature of the ER maximum in the case of ben-
zene. When the behavior of the ER function around the maximum is not
as simple, the DIIS-like algorithms can fail to converge, and one must rely
on other methods (Jacobi sweeps, conjugate gradient, or the steady, simple
n—procedure) to find a maximum. (See the application to benzene nitrosa-
tion and nitration below for such an example.)

The saddle point encountered in these benzene calculations can be de-
scribed as follows: In the smallest basis (STO-3G), the ER orbitals are (qual-
itatively) the same as the Boys’ orbitals, mixing ¢ and 7 orbitals, forming
so-called “banana” bonds. As the basis size grows, however, this set of or-
bitals becomes a saddle point of the ER function, while the true maxima of
the function becomes the usual ER orbitals (which don’t mix ¢ and 7 or-
bitals). This unusual state of affairs, where saddle points and maxima switch
(and the qualitative properties of ER orbitals change) with basis size, em-
phasizes that one must calculate second derivatives in order to be sure one
has found a valid set of orbitals.

4.3 Scaling with System Size: Alkanes

The bottleneck in doing the calculations above is the evaluation of the matrix
elements (ij]jj). However, using the well Boys’ orbitals as our initial guess,
we have generated these integrals in sub-quadratic (and potentially linear)
time. We computed these integrals by first making n matrices of the form
K ,(f,,) = (pi|vi), which are then transformed into (ij|jj). Most naively, this
computation can be done in a (“cubic”) time proportional to nN?, if we
exploit only the sparsity of the AO basis and then transform. [16]. However,
when we exploit the locality of our guess orbitals (and hence the sparsity of
the density matrix Pjy), we can form {K ;(B} in a (“linear”) time proportional
to N.[17]

In Figures 1a and 1b, we show the CPU time required for the computation
of the ER orbitals of alkanes of increasing size (in a STO-3G basis) using the
two (“cubic” and “linear-scaling”) algorithms mentioned above. Note the
difference in time scale. For each algorithm, we break down the CPU time
into the time needed to (a) gather the AO integrals, (b) digest the integrals
into K, ff,}, and (c) perform the linear algebra and manipulations required by
our algorithm. This last component (for manipulations and linear algebra)
has not been optimized. These graphs show that the time for the “cubic”
al%prithm is dominated by the digestion of the relevant AO integrals into
K ,f,}, and this time grows cubicly and prohibitively. For the “linear-scaling”
algorithm, by contrast, the integrals are generated in linear time (as ex-
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pected). Furthermore, the digestion of the integrals into K ,(f,,) is subquadratic
and should become linear asymptotically. The only problematic component
of the “linear-scaling” algorithms is that the time required for the linear alge-
bra and memory manipulation appears to grow cubicly, though with a small
prefactor. As stated above, this code has not been optimized and improve-
ments can be made by cleaning up the interfaces between different blocks of
our own code and the way we manipulate memory storage. Notwithstanding
this optimization, however, we do expect the diagonalization of RR” and the
inversion of S to scale cubicly with a relatively large prefactor. For larger and
larger systems, these effects must dominate and will need to be addressed
to find a truly asymptotic quadratic (or better) algorithm. Perhaps in the
future, the sparsity RR” will allow better than cubic diagonalization, and
given that S is usually close to the identity, a power series for inversion will
suffice . For the moment, however, given the sizes of molecules treated today
by quantum mechanics, the “linear-scaling” DIIS-like algorithms presented
here are a big advance in the computation of ER orbitals.

5 A chemical application: Nitration and Ni-
trosation of Benzene

The highly different reactivies of nitronium (NO3) and nitrosonium (NO™)
toward benzene has been investigated from a theoretical perspective by Gwalt-
ney et al.[19]. There has also been a recent comprehensive DFT study on
benzene-NOj3 [20]. The experimental observation that must be explained is
that NO™ forms a stable m-complex with benzene, but NOJ does not. (In-
stead, NOJ adds directly and rapidly to benzene to form a o-adduct). The
canonical explanation of the benzene-NO™ bonding is that the m-orbitals of
benzene mix with the m*-orbitals of NO™ (here we conceive of NO™ as verti-
cally aligned over the benzene plane—see Figure 2a). One wonders why NOj
is incapable of forming such a bond, given the similar electronic properties
of the two (e.g. the two species have very similar ionization potentials in
the gas phase)? Gwaltney et al mapped out the potential energy surfaces of
both benzene-NO™ and benzene-NOJ and argued that the different reactiv-
ities could be explained by the presence of different stationary points (which
would be intermediates in a reaction pathway). These findings matched well
with conclusions based upon the application of Marcus-Hush theory.

Since localized orbitals might qualitatively explain the differences in sta-
bility between benzene-NO™ and benzene-NOJ, we computed the localized
(ER) orbitals of these m-complexes using the algorithms described in the pre-
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vious sections. For benzene-NO™, the nuclear geometry was fixed by placing
the Nitrogen and Oxygen atoms directly above the center of the benzene
plane, and then minimizing the energy of the complex using restricted DF'T
with the BSLYP functional, leading to the geometry shown in Figure 2a. For
the sake of convenience, we will identify the benzene plane with the xy-plane.
For benzene-NOJ, the linear cation (NOJ) was initially placed horizontally
above the benzene plane (with Nitrogen above the center of the benzene ring,
and the Oxygen atoms above Carbon nuclei in benzene); subsequently, the
restricted B3LYP energy was minimized leading to the geometry shown in
Figure 3a.5 (This geometry corresponds to Structure 1 in the paper by Olah
et al [20].) We shall call the plane, which incorporates the NO; molecule
and is perpendicular to the benzene plane, the yz-plane. Although the ge-
ometries of benzene-NO*' and benzene-NOj are not directly comparable in
Figure 2a and Figure 3a (i.e. NOT is vertically aligned while NOj is horizon-
tally aligned over the benzene plane) in both cases one expects donation of
electrons from benzene to the nearby cation, resulting in a stable m-complex.

In the case of benzene-NO™, five ER orbitals are distributed tightly over
the NO™ cation, exactly as expected by a simple count of electrons. In
addition, three equivalent delocalized donor-acceptor ER orbitals connect the
Nitrogen atom of NO* to the benzene ring. These orbitals are mixtures of
localized m-orbitals belonging to benzene with unoccupied orbitals belonging
to the Nitrogen atom of NO'. A contour map of one delocalized ER orbital
(in the zz-plane) is shown in Figure 2b. The shape of this delocalized ER
orbital shows charge transfer, whereby benzene shares electronic density with
the cation NOT.

In the case of Benzene-NOJ , the ER orbitals look quite different. For this
geometry, only one delocalized ER orbital is spread out over both benzene
and NOJ . A three dimensional representation of this orbital is given in Figure
3a and a two-dimensional contour map is given in Figure 3b. (The contour
map is in the zz-plane.) This unique donor-acceptor ER orbital is formed
by the mixing of a localized m-orbital of benzene with an unoccupied orbital
(with 7* character) of NOJ . Aside from this donor-acceptor orbital, the other
two localized m-orbitals of benzene are unable to mix with an unoccupied
orbital of NOJ because of geometric concerns: the problem is that the -
LUMO of NOJ changes the sign of its phase across the yz-plane. As such,
only one localized 7m-orbital of benzene (with density on the z < 0 region)
can mix constructively with NOj unoccupied orbitals. The second and third
localized m-orbitals of benzene have density on both sides of the x = 0 plane

5We note that the geometries of both Figure 2a and Figure 3a are saddle points of the
B3LYP functional, rather than minima.
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and, therefore, cannot mix constructively with the unoccupied orbitals of
NOj. This example demonstrates the utility of localized orbitals, whereby
conditions of symmetry can be simplified (i.e. the symmetric properties of
the canonical MO’s are more cumbersome).

Accordingly, the essential lesson drawn from these ER orbitals is that,
unlike NO™, NOJ simply does not have the correct geometry (and symmetry)
to form a stable m-complex with benzene, provided that the Nitrogen atom
be over the center of the benzene ring. Hence, it is not surprising that
unconstrained minimization breaks symmetry, bends the NOj cation (as
charge is transferred to it), and moves it horizontally from a position above
the center of the benzene ring to a position above the edge of the benzene
ring. For completeness, in Figure 4 we show the donor-acceptor ER orbital
of benzene-NOj in this more stable geometry. Here, exactly one localized
m-orbital of benzene mixes strongly with one unoccupied orbital of NOJ,
creating a stationary m-complex. Even though this structure is energetically
favorable compared to the geometry of Figure 3a, we note that this geometry,
like Figure 3a, is also a saddle point of the energy function (rather than a
minimum)[19][20].% Thus, this structure is also unlikely to be experimentally
observed; most likely, it evolves quickly into the o-adduct of NO3 on benzene.

In summary, we conclude that, unlike NO™, NOJ does not form a stable
m-complex because first, basic geometric factors push the cation to the side of
the benzene ring while, second, more subtle features of the potential energy
surface push benzene-NOj towards the o-adduct structure, preventing a 7-
complex above the benzene edge from being energetically stable.

6 Discussion

Though the methods presented here can be powerful tools for solving sym-
metric homogeneous equations of orthogonal matrices, specifically those de-
signed to compute localized orbitals, several caveats need to be explicitly
stated. A first and obvious problem faced by our algorithms is the problem
of invertibility of the R matrices. For the ER function, R® = (ij]jj), while
for the Boys function, Rg-oys =< i|r]i > - <i|r|j > . Stationary points occur
when R is symmetric, and each step requires inversion of RR”. As such,
there are obvious difficulties when R becomes singular. Any possible physi-
cal significance of singular R matrices is unclear and certainly is specific to
the function being maximized. As a rule of thumb, we have had no prob-
lems with R-singularity when working with the ER function. However, the

6The geometry of Figure 4 corresponds to Structure 7 in the paper by Olah et al.
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Boys’ function is apparently less well-behaved, as, for example, R becomes
singular when localizing the SCF orbitals of (geometrically optimized) de-
cane, C1gHys. Again, we are unaware of any physical significance behind this
singularity.

Second, we repeat that our fast, algorithms do converge to saddle points
just as they converge to maxima. This demands that one check second deriva-
tives to confirm that one is indeed at a maxima. Of course, one need not
compute all of the eigenvalues of the second-derivative matrix. Several tech-
niques exist (such as those of Davidson [23][24]) to compute the smallest or
largest eigenvalue of a symmetric, matrix; such techniques will be incorpo-
rated in future implementations of these algorithms. Even with such a test to
conclude the algorithm, future work should seek to quickly find paths to the
basin of the maxima directly, without passing through saddle points. Once
there, we may successfully turn on the algorithms presented in this paper. In
the examples given, we have relied on the (cheaply computed) Boys localized
orbitals as our initial guess. But, as demonstrated above, these orbitals can
correspond to a saddle point of the ER function, creating the ineffecient effect
of forcing us to a saddle point, from which we must then jump off. Perhaps
a few conjugate gradient steps may do the trick. However, we expect that
any future algorithm designed to quickly find the basin of a maxima must
rely on second-derivative information. In the case of the ER function, these
derivatives involve terms with matrix elements (jk|ii) and (ij|ik). We spec-
ulate that these should not be that much more computationally expensive
to compute than the terms from the first derivative, (ij|jj). Though the
coulomb-like integral (jk|ii) will be harder to bound, each localized orbital
still does interact with only a bounded number of other localized orbitals.

Third, and potentially most difficult, the DIIS-like algorithms presented
above fail when the error near the maximum does not change linearly with
small changes in the choice of orbitals. This occurs when the function is
quartic near the maximum or, in practice, when the Hessian has a small
eigenvalue in the region surrounding the purported maximum. For example,
in the case of nitrated benzene, the ER function has one rather flat direction
in the vicinity of the maximum. This fact complicated our procedure for
calculating ER orbitals, as we were forced to use a combination of quicker,
but more dangerous, DIIS-like steps and steadier, but slower, n steps. Finally,
throughout this paper, we have not considered the case of multiple local
maxima, which is a reality at the very least when the nuclear geometry, like
benzene, has certain symmetries. However, such a global problem has no
easy solution and was not investigated here.

Notwithstanding these liabilities, the algorithms presented here do po-
tentially allow the calculation of ER orbitals for larger systems than those

16



treated before, provided that the defining function is well-behaved near its
maximum. Given that the matrix elements (ij|jj) are computed in a timely,
linear fashion, we expect that this algorithm will be very useful in helping to
search for the best local picture of electronic orbitals. And as the benzene ni-
tration/nitrosation example above demonstrates, such localized orbitals can
help us understand the quantum chemistry of bonding.

7 Summary

Localized orbitals are and will continue to be an essential tool in the fu-
ture of quantum chemistry, as on the one hand, they lend themselves best
to chemical interpretation and, on the other hand, they may be helpful in
facilitating more efficient calculations. For instance, the choice of localized
occupied orbitals, upon which virutal excitations are made, is necessarily a
crucial ingredient in any recipe for post Hartree-Fock local-correlation wave-
functions. If they can can be computed quickly, the ER orbitals may well be
used as building blocks in future local-correlation work because, by minimiz-
ing »_,,;(ij]ij), we expect the two-electron integrals generated from these
orbitals to be very sparse, helping to speed up computation. With that in
mind, this paper has presented algorithms which very quickly compute the
ER orbitals, as well as other orbitals coming from symmetric homogeneous
functions of orthogonal matrices, provided that we start from a good initial
guess. It remains to integrate this algorithm with a good global optimizer,
which can take one to the basin of the ER function’s maximum in an optimal
amount of time. If a decent initial guess can be made, though, this algorithm
(or a derivative thereof) will likely find use as computational chemists seek
to find and exploit localized orbitals.
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8 Appendix

8.1 A Mathematical Lemma

In this paper, we use the following lemma: Given an invertible matrix A and
a function f:SO(n) — R defined by

F(U) =) AUj; = Tr(AU)

then f has one unique local (and global) maximum.

Proof:
Let U be an orthogonal matrix for which f is maximal, and consider, for
O orthogonal, g(0) = Tr(AUO) = Tr(BO) = ) B;;0j;, where B = AU.

%)

8.2 Stationary Points

We think of the orthogonal group as generated by the vector space of anti-
symmetric matrices (O = e2), and differentiate in those directions:

~ ) la=0 = Bij——"|a=
(qu ° ; ’ qu °
= Y Bij (8;0iq — 8j40ip)
i
= By — By

ap
= Z Aquip - Aszz

So g is stationary whenever AU = (AU)”, i.e. AU is symmetric.

To find U, we write A in polar form: A = NU where N is a positive
definite Hermitian form and U is unitary. If we write V = UU, also unitary,

then we require
B=NV=NV) =VIN=B7 (7)

To find V,we diagonalize N = CTAC where A is positive along the

diagonal and C is unitary. We rewrite eqn (7) as C"ACV = VI'CTAC, or
A = WAW, where W = CVTCT is unitary.
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Let W = ('U}”) and

tin tiz -0 tin
W2 — tor lag -+ ton

tnl tn? tnn

and
A O 0
0 X 0
A= _
0 0 - A\,

Because t; = >, ; Wijwj; and waj = 1, it follows by Cauchy-Schwarz
J

that |t;;| < 1. Moreover, Tr(A) = Tr(WAW) = Tr(W?2A) says that

AL+ Xe+ 0+ A =tids +taode + o+ tanha

Given that Vi, \; > 0, this can only be satisfied if, Vi, t; = 1, i.e. W2 = Id.
Accordingly W must be symmetric, which implies V is symmetric (and still
orthogonal).

Finally, because V is symmetric, eqn (7) implies that NV = VN, which
in turn implies that N and V can be simultaneously diagonalized: N =
DTAxD and V = DTAyD where Ay is all +1 on the diagonal. To solve
for U, we recall V = UU hence U = UTDTAyD. This can be put into in
terms of A, using the polarization formulae A = NU and N = vVAAT (here
we mean the postive square root). Then, U = N71A = (AAT)_1/2A. It
follows that

U=A" (AAT) ’D"A,D
This formula gives all of the stationary values of g, which include the maximal
values of f. D here is the matrix of eigenvalues of N, not necessarily unique.
As it turns out, only one of these points is a maximum.

8.3 Maxima

Again expanding an arbitary unitary matrix O around the identity, it follows
that, to second order,

820wi 1 ( 5’u]p (6qr6is — 6qs(5ir) + 6qz' (6wr(5ps - 5w56pr) )

aquaA,,s |A:0 B 5 _‘swq ((51,,.(5“ - ‘spséir) - 6pi (‘5w1"5qs - 5ws(5qr)
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Hence,

82 g 82 wz
aA oA = - Bzw
DN N a0 Z NN

1 ( (Bsp + Bps) dgr + (Bgr + Brg) Ops >

5 - (Brp + Bpr) 5(18 - (Bsq + qu) 61)1"

= (BSP5qr + qu‘sps - Brp(sqs - Bsq‘spr)

To check for negative-definiteness, note that:

Z pqu GA |A OMrs = MprBsers+ququMrs
pqVPrs

pqrs
_MpsBrers - quBqurs
= Tr(M"BM' + MBM - M"BM — MBM")
= Tr(B(M"M" + MM - M"M — MM"))
It is easy to see that
Y = M'M" + MM - M'"M - MM7”
= —(M-M) - (MM

is a non-positive matrix. Because we are interested only in antisymmetric
M (the tangent space of the orthogonal group), it follows Y # 0. Hence,
Y is negative-definite. We claim the sum above is negative VM iff B is
positive-definite. Recall from the last section, B = NV = DTAD where
A =ANAy.
To check, we first suppose that B = DY AD is positive-definite. Then
Tr(BY) = Tr(DTA,DY) = Tr(A,DYDT) < 0
since DYDY is still negative-definite. Conversely, choose M = DTSD and
Y = 4-DTS?D where
Sep = 0ailp;j — Oa;jopi
(5%) s = —Oailpi — 0aj0s

Then the requirement

iTr(BY) _ Tr(DTAS’D) = Tr(AS?) = —Asi — Ay; < 0
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demands that Vi,j A; + Aj;; > 0. So we can have at most one negative
eigenvalue of A. But for SO(n), we further demand that AjjAgs -+ Ay > 0
so, in fact, Vi, A;; > 0. B must be positive-definite.

Hence, we conclude that the only orthogonal matrix U for which f is
maximal is when B = DTAD = DTAyAyD is positive definite. Since
Ay is positive-definite, this requires Ay = Id, and it follows that the only
maximum is at

U= AT (AAT)

where here we take the positive square root. .

8.4 Carlson-Keller Corollary

One should note that the theorem above provides immediate (re)proof of

the Carlson-Keller theorem[10], that S~'/2 is the transformation constructing

orthogonal orbitals that most resemble a set of initial non-orthogonal orbitals.

In that case, if xy; = Y ¢;C;; and C = S™1/2U for U orthogonal, one wants
j

to minimize the function:

h(C) = Y (xi— ilxi — ¢:) = constant — 2 Z (Xil9s)

i

constant — 2 Z Cji (¢;]¢:) = constant — Tr(S'/?U)

tj
Here, of course, S;; = (¢;|¢;) is the overlap matrix. From the theorem
above, it is clear that A is minimized for U = (S¥/2)T(S!/2(S/2)T)~1/2 = Id
since S is symmetric. Hence, C = S™1/2, which is the Carlson-Keller result.

Furthermore, the theorem above also (re)proves the result of Aiken et al [11],
that h has exactly one minimum, and that is C = S~1/2.

8.5 Generalized n—step

Suppose we are given non-orthogonal orbitals, {¢;}, and we seek the or-
thonormal orbitals x; = ) ¢;C;; which maximize the 1 function,
J

n(C) = Z (Xi%i|pidhs) = Zcﬁ( ¢;Pildid:)

K2
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Then, we define S;; = (¢i|¢;), Rij = (¢:i¢;|¢;¢;), and we enforce orthogonal-
ity by writing C = S~'/2U for U orthogonal. Then,

ij
Application of the lemma above shows that 7 is maximized for
U — S—1/2R (RTS—lR)—1/2 a,nd C — S_lR (RTS_lR)_1/2.
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Tables

Table 1: Number of Jacobi sweeps and DIIS-like iterations necessary to con-
verge Boys orbitals for benzene (see text for convergence criteria and initial
guess.)

Basis Basis | Num. Jacobi Num. DIIS-like
Size | sweeps before steps before
convergence convergence
(DIIS-1 and DIIS-2)

STO-3G 36 11 14
6-31G 66 10 17
6-31G* 102 10 15
6-31G** | 120 10 13
6-311G** | 144 10 15
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Table 2: Number of n-steps and DIIS-like steps necessary to converge to ER
orbitals for benzene (see text for convergence criteria and initial guess.)

Basis Basis | Num. Saddle | Num. DIIS-1 | Num. DIIS-2 | Num. of 5
Size Points steps before | steps before | steps before
convergence | convergence | convergence
STO-3G 36 0 8 8 19
6-31G 66 1 16 16 486
6-31G* 102 1 16 15 406
6-31G** | 120 1 16 15 395
6-311G** | 144 1 15 15 366
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Figure la: The CPU times (seconds) required in the calculation of ER or-
bitals of alkanes of increasing size. The AO basis is STO-3G. Here, the
“cubic” algorithm was employed to generate the integrals (ij|jj) from the
AO integrals. See text. Note the change in time between this Figure and
Figure 1b. The dominant effect by far in this graph is digestion, which scales
cubicly. For each point on this graph (i.e. for every alkane), exactly seven
DIIS-2 iterations were required for convergence (which implies that DIIS-2
converges exactly as well for all alkanes of different sizes).
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Figure 1b: The CPU times (seconds) required in the calculation of ER or-
bitals of alkanes of increasing size. The AO basis is STO-3G. Here, the
“linear-scaling” algorithm was employed to generate the integrals (ij|jj) from
the AO integrals. See text. Note the change in time between this Figure and
Figure 1a. Also, note that for systems larger than CsgHyg2, the linear algebra
and memory manipulation of the algorithm require more CPU time than the
integral formation and digestion. (Again, as in Figure la, for each point on
this graph, exactly seven DIIS-2 iterations were required for convergence.)
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Figure 2a: Nuclear geometry of Benzene-NO™ | over which is plotted a three
dimensional spatial representation of a delocalized donor-acceptor ER or-
bital. The orbital shown is one of three equivalent (symmetrically related)
orbitals. (Green = Carbon, White = Hydrogen, Red = Oxygen, Blue =
Nitrogen). This structure was optimized with N-O vertically aligned over
the center of the benzene ring. Perpendicular distance from N to benzene is
2.16A.
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Figure 2b: Two dimensional contour plot of the delocalized donor-acceptor
ER Orbital in Benzene-NO™. The plane of the contour is perpendicular to
the benzene plane, cutting across the midpoints of Carbon-Carbon bonds
(rather than through any Carbon nucleus).
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Figure 3a: Nuclear geometry of Benzene-NOj, over which is plotted a three
dimensional spatial representation of the one (unique) delocalized donor-
acceptor ER orbital. (Green = Carbon, White = Hydrogen, Red = Oxygen,
Blue = Nitrogen) This structure was established by placing NOJ horizon-
tally over the benzene ring and optimizing. The geometry here corresponds
to Structure 1 in the paper by Olah[20]. The distance from the Nitrogen
atom to the benzene plane is 3.1A.
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Figure 3b: Two dimensional contour plot of the delocalized donor-acceptor
ER Orbital in Benzene-NO;. The plane of the contour is perpendicular to
both the benzene plane and O-N-OT, passing directly through two Carbon
nuclei of benzene and the Nitrogen nucleus of NOJ .
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Figure 4: ER-localized donor-acceptor orbital for benzene-NOJ, in which
the NOJ cation is bent and is situated above the edge of the benzene ring,
over a Carbon-Carbon bond. (Green = Carbon, White = Hydrogen, Red
= Oxygen, Blue = Nitrogen) This structure is the MP2-optimized structure
discussed in [19]. The interaction here is stronger than the interaction in
Figure 3a because symmetry here allows a strong mixing of one localized
m-orbital of benzene with an unoccupied orbital of NOJ. The distance from
the Nitrogen atom to the benzene plane is 2.17A.
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